Vorlesungen Mechatronik im Wintersemester

Energiforsk Seminar: Lectures in the Power Plants Ringhals, Oskarshamn and Forsmark, March 2022

TECHNISCHE UNIVERSITÄT DARMSTADT

Vibrations of Turbines and Generators in Power Plants

Lecture I Introduction and Vibration Phenomena in Turbogenerators

Rainer Nordmann Technische Universität Darmstadt and Fraunhofer Institute LBF

Introduction and Vibration Phenomena in Turbogenerators

- Mechanical and Electrical Components of Turbogenerators
- > Lateral and Torsional Vibration Phenomena in Turbogenerators
- > Lateral Vibration Phenomena demonstrated by Gustav de Laval
- Laval Shaft: Modelling and Equations of (Lateral) Motion
- > Laval Shaft: Natural Frequency, Unbalance Response, Resonance
- Influence of Stiffness and Damping Characteristics in Bearings
- From Simple Rotor Systems to Large Turbogenerators

Mechanical and Electrical Components of Turbogenerators Steam Turbines, Generator and Pipe System in the Plant

Lateral and Torsional Vibration Phenomena in Turbogenerators Mechanics and other different Disciplines of Physics

Mechanical and Electrical Components of Turbogenerators Machine Building with Steam Turbines, Generator and Pipes (OL3)

Power: 1600 MW Speed: 1500 1/min (25 Hz)

Rotating Components

- 1 High Pressure Turbine
- 3 Low Pressure Turbines
- 1 Generator

running in Oilfilm-Bearings

Length of Machine: 68 m

Mechanical and Electrical Components of Turbogenerators Mounting of Steam Turbines and Generator in Machine Building (OL3)

Mechanical and Electrical Components of Turbogenerators Low Pressure Turbine Shaft with Blades

Weight 320 t Length: 12,5 m **Diameter of Last Blade Row: 6,7 m** Blade length:up to 1,8 m **Blade weight: up to 230 kg** Bearing diameter: 850 mm

Mechanical and Electrical Components of Turbogenerators Conventional Steam Turbine Shaft Train with Oil Film Bearings

Power: 1000 MW Shaft Length: 55,8 m Shaft Weight: 426 to Bearing Diameter: 600mm

Mechanical and Electrical Components of Turbogenerators Combined Cycle Single Shaft Train with Steam and Gas Turbines

Mechanical and Electrical Components of Turbogenerators Combined Cycle Single Shaft Train with Steam and Gas Turbines

Mechanical and Electrical Components of Turbogenerators Combined Cycle Single Shaft Train with Steam and Gas Turbines

Introduction and Vibration Phenomena in Turbogenerators

- > Mechanical and Electrical Components of Turbogenerators
- Lateral and Torsional Vibration Phenomena in Turbogenerators
- > Lateral Vibration Phenomena demonstrated by Gustav de Laval
- Laval Shaft: Modelling and Equations of (Lateral) Motion
- > Laval Shaft: Natural Frequency, Unbalance Response, Resonance
- Influence of Stiffness and Damping Characteristics in Bearings
- From Simple Rotor Systems to Large Turbogenerators

Lateral and Torsional Vibration Phenomena in Turbogenerators Mechanics and other different Disciplines of Physics

Lateral and Torsional Vibration Phenomena in Turbogenerators Static and Dynamic Forces for Lateral Vibrations of Turbines

Process Forces

> Casing, Pedestals, Foundation

Seal Forces

Oil Film Bearing

Rotor Weight

Rotating Shaft with Blades

Unbalance Forces

Seals

Lateral and Torsional Vibration Phenomena in Turbogenerators Topics for the Investigation of Vibrations

- How is the influence of time dependent Forces and Moments on the dynamic behavior of a Machine?
- Which Motions of Vibration and which internal Stresses act on the rotating and on the non-rotating Machine Parts?
- Are Critical Conditions (Resonances, Instabilities) possible?
- Can Vibrations destroy Machine Parts? Rubbing, Blade Loss, Shaft Cracks, Bearing Failures, large Deformations,...
- Which Interactions have to be considered? Fluid Structure Interaction, Rotor Structure Interaction, Rotor Blade Interaction, Electromechanical Interaction

Lateral and Torsional Vibration Phenomena in Turbogenerators Topics for the Investigation of Vibrations

Can Vibrations destroy Machine Parts?

Rubbing, Blade Loss, Shaft Cracks, Bearing Failures, large Deformations,...

Lateral and Torsional Vibration Phenomena in Turbogenerators Lateral and Torsional Vibrations of Shaft Trains

Coupling of Lateral and Torsional Vibrations usually negligible

Lateral and Torsional Vibration Phenomena in Turbogenerators Lateral and Torsional Vibrations of Shaft Trains

Which Phenomena are of Practical Relevance?

Lateral Vibrations: Lateral Vibrations perpendicular to the Shaft axis with Bending along the Shaft line. **Physical Effects: Inertia (masses), Siffness** and Damping of System Components (Shaft, Bearings).

> **Dynamic Characteristics:** Natural Frequencies, Critical Speeds, Natural Modes, Stability, Amplitudes and Phase angles of the Vibration Response due Excitations

Excitation: Mechanical and thermal Unbalances, Spiral Vibrations, Bow (Unbalance) due to Coupling Errors, Excitation due to Instabilities in Fluid Bearings and Seals

Lateral and Torsional Vibration Phenomena in Turbogenerators Lateral and Torsional Vibrations of Shaft Trains

Which Phenomena are of Practical Relevance?

Torsional Vibrations: Torsional Vibrations around the Shaft axis with torsional deformations along the Shaft line, Physical Effects: Moments of Inertia, Torsional Stiffness and Damping of the System components

Dynamic Characteristics: Natural Frequencies, Natural Modes, Modal Damping, Amplitudes and Phase angles of the Vibration Response due to Excitations.

Excitation: Air Gap Torques in Electrical Machines due to Electromagnetic Coupling in the Generator and the Grid.

Lateral and Torsional Vibration Phenomena in Turbogenerators Different Interactions have an Influence on the Vibrations

Rotor-Structure Interaction: Casing, Foundation **Elektromechanical Interaction: Generator,Grid**

Introduction and Vibration Phenomena in Turbogenerators

- > Mechanical and Electrical Components of Turbogenerators
- Lateral and Torsional Vibration Phenomena in Turbogenerators
- > Lateral Vibration Phenomena demonstrated by Gustav de Laval
- Laval Shaft: Modelling and Equations of (Lateral) Motion
- > Laval Shaft: Natural Frequency, Unbalance Response, Resonance
- Influence of Stiffness and Damping Characteristics in Bearings
- From Simple Rotor Systems to Large Turbogenerators

Lateral Vibration Phenomena demonstrated by Gustav de Laval Experimental Investigations with a simple Steam Turbine

Laval - Laufrad

Gustav de Laval (1845 – 1913) Swedish Engineer, Theory by Föppl 1895

Lateral Vibration Phenomena demonstrated by Gustav de Laval Experimental Investigations with a simple Steam Turbine

Amplitude \hat{x} of unbalance vibration

Introduction and Vibration Phenomena in Turbogenerators

- > Mechanical and Electrical Components of Turbogenerators
- Lateral and Torsional Vibration Phenomena in Turbogenerators
- > Lateral Vibration Phenomena demonstrated by Gustav de Laval
- Laval Shaft: Modelling and Equations of (Lateral) Motion
- > Laval Shaft: Natural Frequency, Unbalance Response, Resonance
- Influence of Stiffness and Damping Characteristics in Bearings
- From Simple Rotor Systems to Large Turbogenerators

Laval Shaft: Modelling and Equations of Motion Simple Laval Shaft with Rigid Bearings

Laval Shaft: Modelling and Equations of Motion

Excitation due to Harmonic Unbalance Forces

Laval Shaft: Modelling and Equations of Motion Equations of Motion for x- and y-direction

Introduction and Vibration Phenomena in Turbogenerators

- > Mechanical and Electrical Components of Turbogenerators
- > Lateral and Torsional Vibration Phenomena in Turbogenerators
- > Lateral Vibration Phenomena demonstrated by Gustav de Laval
- Laval Shaft: Modelling and Equations of (Lateral) Motion
- Laval Shaft: Natural Frequency, Resonance, Unbalance Response
- Influence of Stiffness and Damping Characteristics in Bearings
- From Simple Rotor Systems to Large Turbogenerators

Laval Shaft: Natural Frequency, Resonance, Unbalance Response Natural Frequency and Resonance

Natural frequency of Laval's shaft

$$\omega = \sqrt{c/m}$$

Bending stiffness of shaft c

External excitation with this frequency leads to Resonance!

Laval Shaft: Natural Frequency, Resonance, Unbalance Response Unbalance Response with Resonance and Self Centering

Laval Shaft: Natural Frequency, Resonance, Unbalance Response Unbalance Response with Resonance

Laval Shaft: Natural Frequency, Resonance, Unbalance Response Unbalance Response for Disk Center W and Center of Gravity S

Laval Shaft: Natural Frequency, Resonance, Unbalance Response Unbalance Response with Forward Whirl Vibrations

Forward Whirl: Direction of Shaft Vibration is equal to direction of Shaft Rotation

Laval Shaft: Natural Frequency, Resonance, Unbalance Response Relative Shaft Vibrations show Orbits of a Shaft

Monitoring: Relative Vibrations of the Shaft in horizontal and vertical direction. By Superposition of the two signals Orbits can be determined. Orbits are the shaft motions in the measurement plane.

Introduction and Vibration Phenomena in Turbogenerators

- > Mechanical and Electrical Components of Turbogenerators
- > Lateral and Torsional Vibration Phenomena in Turbogenerators
- > Lateral Vibration Phenomena demonstrated by Gustav de Laval
- Laval Shaft: Modelling and Equations of (Lateral) Motion
- > Laval Shaft: Natural Frequency, Unbalance Response, Resonance
- > Influence of Stiffness and Damping Characteristics in Bearings
- From Simple Rotor Systems to Large Turbogenerators

Influence of Stiffness and Damping Characteristics in Bearings Laval Shaft with Bearing Stiffness Coefficients k_{L1} , k_{L2}

Influence of Stiffness and Damping Characteristics in Bearings Natural Frequencies as Function of Stiffness Ratio k/ k_{Li}

Influence of Stiffness and Damping Characteristics in Bearings Stiffness and Damping Coefficients of Oil Film Bearings

Influence of Stiffness and Damping Characteristics in Bearings Stiffness and Damping Coefficients of Oil Film Bearings

Stiffness- and damping coefficients of the Oil Film Bearings

$$F_{x} = k_{xx}x + k_{xy}y + d_{xx}\dot{x} + d_{xy}\dot{y}$$
$$F_{y} = k_{yx}x + k_{yy}y + d_{yx}\dot{x} + d_{yy}\dot{y}$$

Influence of Stiffness and Damping Characteristics in Bearings Comparison of Vibrations: Oil Film Bearings versus Rigid Bearings

Shaft vibration with elliptical orbits

Influence of Stiffness and damping Characteristics in Bearings Vibration Behavior of a Simple Laval Shaft with Oil Film Bearings (Tondl)

Introduction and Vibration Phenomena in Turbogenerators

- > Mechanical and Electrical Components of Turbogenerators
- > Lateral and Torsional Vibration Phenomena in Turbogenerators
- > Lateral Vibration Phenomena demonstrated by Gustav de Laval
- Laval Shaft: Modelling and Equations of (Lateral) Motion
- > Laval Shaft: Natural Frequency, Unbalance Response, Resonance
- Influence of Stiffness and Damping Characteristics in Bearings
- From Simple Rotor Systems to Large Turbogenerators

From Simple Rotor Systems to Large Turbogenerators

Different Interactions in Rotordynamics

Rotor-Structure Interaction: Casing, Foundation **Elektromechanical Interaction: Generator,Grid**

From Simple Rotor Systems to Large Turbogenerators

FE-Model and Equations for Lateral Vibrations of Turbine Shaft Trains

$\mathbf{M} \ddot{\mathbf{x}}(t) + (\mathbf{D}(\Omega) + \mathbf{G}(\Omega)) \dot{\mathbf{x}}(t) + \mathbf{K}(\Omega) \mathbf{x}(t) = \mathbf{F}(t)$

The **Equations of Motion** for **Lateral Vibrations** of the **Turbogenerator** contain the stiffness and damping information of the shaft train, the bearings and the supports (pedestals and foundation)

From Simple Rotor Systems to Large Turbogenerators

Unbalance Vibration Response of a Turbine Shaft Train versus Speed

Vorlesungen Mechatronik im Wintersemester

Energiforsk Seminar: Lectures in the Power Plants Ringhals, Oskarshamn and Forsmark, March 2022

TECHNISCHE UNIVERSITÄT DARMSTADT

Vibrations of Turbines and Generators in Power Plants

Lecture I Introduction and Vibration Phenomena in Turbogenerators

Rainer Nordmann Technische Universität Darmstadt and Fraunhofer Institute LBF

Vibrations of Laval's Shaft with Rigid Bearings Shaft stress due to static deflection

Vibrations of Laval's shaft with Rigid Bearings Shaft stresses for Forward and Backward whirl

Vorlesungen Mechatronik im Wintersemester

Energiforsk Seminar: Lectures in the Power Plants Ringhals, Oskarshamn and Forsmark, March 2022

TECHNISCHE UNIVERSITÄT DARMSTADT

Vibrations of Turbines and Generators in Power Plants

Lecture I Introduction and Vibration Phenomena in Turbogenerators

Rainer Nordmann Technische Universität Darmstadt and Fraunhofer Institute LBF